A novel Lie algebra of the genetic code over the Galois field of four DNA bases.
نویسندگان
چکیده
Starting from the four DNA bases order in the Boolean lattice, a novel Lie Algebra of the genetic code is proposed. Here, the main partitions of the genetic code table were obtained as equivalent classes of quotient spaces of the genetic code vector space over the Galois field of the four DNA bases. The new algebraic structure shows strong connections among algebraic relationships, codon assignments and physicochemical properties of amino acids. Moreover, a distance defined between codons expresses a physicochemical meaning. It was also noticed that the distance between wild type and mutant codons tends to be small in mutational variants of four genes: human phenylalanine hydroxylase, human beta-globin, HIV-1 protease and HIV-1 reverse transcriptase. These results strongly suggest that deterministic rules in genetic code origin must be involved.
منابع مشابه
Deformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کاملDeformation of Outer Representations of Galois Group II
This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...
متن کاملArithmetic Teichmuller Theory
By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...
متن کاملVector space of DNA genomic sequences on a Genetic Code Galois Field
A new N-dimensional vector space of DNA sequences over the Galois field of the 64 codons (GF(64)) was recently presented. Now, in order to include deletions and insertions (indel mutations), we have defined a new Galois field over the set of elements X1X2X3 (C125), where Xi belong to {O, A, C, G, C}. We have called this set, the extended triplet set and the elements X1X2X3, the extended triplet...
متن کاملMonomial Irreducible sln-Modules
In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematical biosciences
دوره 202 1 شماره
صفحات -
تاریخ انتشار 2006